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An integral equation for rising meson Regge trajectories is derived and solved for the p trajectory. The
equation is a simple extension of a method previously described in which dispersion relations for n(s) and
the reduced residue b (s) are coupled by unitarity. In the present method, the trajectory dispersion relation
is subtracted twice, which causes trajectories to rise ~s. The solutions depend on two parameters and repre-
sent almost straight trajectories with imaginary parts.

I. INTRODUCTION AND REVIEW

'HERE is considerable experimental' and theo-
retical' evidence that Regge trajectories rise to

positive in6nity with energy and fall to negative infinity
with negative energy. In fact, if one takes recent
indications seriously, one may conjecture that at least
the p trajectory is roughly linear in s.' This also seems
to agree well with several 6ts4 to high-energy scattering
data, where the p trajectory is exchanged.

If we consider the proposition that the Regge tra-
jectory n, (s) is a real-analytic function of s, with only a
right-hand cut extending to in6nity, then two reason-
ably obvious facts are worth mentioning:

(a) zr(s) cannot be strictly linear in s, because in that
case it could not have an imaginary part and the p meson
itself would not have a width. Also, threshold properties
of n would permit this only when zr(s) =-,' at threshold.

(b) If we assume that the trajectory behaves as a
power as [s[ ~ oo, say, zx(s) [s[",then real analyticity
demands

zx(s) ~ a(coszre) [s["—ia(sinzre) [s[",
s —+ +~+is (1a)

and
n(s) ~ a[s[", s~ —~. (1b)

In order for the trajectory to rise for positive s, we
demand a(coszre) )0, and in order not to create infinitely

many resonances with negative width, a(sinzre) (0.This
eliminates 0(e(z from our consideration (as it would
1(e(-,', etc.). Con6ning ourselves to ', (e(1,—we see
that we must have u& 0 and if the trajectory will rise on
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the positive side it will fall on the negative side as
s ~~.'
In this paper, using the p trajectory as an example,

we combine statements which are often used separately,
about analyticity of the trajectory and the residue func-
tion and unitarity, to derive an integral equation for
zr, (s), which preserves its known properties and in-
corporates an imaginary part.

In previous papers a method was described' and
applied to potential theory~ which generated whole
trajectories by combining the real analyticity of cz(s)
and of the reduced residue function b(s) =p(s)g '~&'.

An integral equation for Imn(s) was obtained by
coupling the dispersion relations for n and b through
unitarity. The residue p is not independent of the n's,
but is a function of the partial-wave representation and
of how many trajectories are to be sin1ultaneously com-
puted. In the crudest one-trajectory approximation,
this yields P=Imn/q. This approximation comes from
the simple application of unitarity to the expression

~(V,1)=P(V)/L~ a(V)j,—
and neglects the contribution of other trajectories as
well as the background integral.

Better representations which display the "full" con-
tribution of each Regge pole, such as the Khuri and
Cheng representations and particularly modifications
of these representations"" which extract the high-
energy part, greatly improved the convergence of these
integral equations in terms of the number of trajectories
which must be used in order to reproduce the exact
results of the Schrodinger equations, so that only
trajectories which actually reach the physical plane
needed to be taken into consideration. ""When Imn(s)
is much smaller than the spacing between trajectories
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( unity), then the detailed nature of the representation
is much less important and the trajectories decouple to
reasonably good approximation.

The whole scheme, however, had been based on
trajectories which go to a constant as s —+ ~, which is
correct for the usual class of potential-theory tra-
jectories. We now want to calculate trajectories which
have a power behavior as s —+ ~, In this case, the
dispersion relations need more subtractions and the
various representations" are suspect. In Sec. II we start
from the beginning and derive a prototype equation,
again using the simplest connection between residue and
trajectory. With potential theory no longer a reliable
guide, some of the boundary conditions are guesses and
we can only hope that comparison with experiment will

suggest better ones until we have a better understanding
of the asymptotic properties suggested by rising trajec-
tories and crossing.

between P and a,'

Imn(v)—
8(v) = +v e ev

pl/2 yg 2 4~ 2
(6)

to the expression 2 (s, l) =P/(l —n) and going to the pole
position l=n Equa. tion (6) is definitely to be considered
an approximation, while (3) and (4) are meant to be
possibly wrong exact statements.

If we choose as a boundary condition that b(v) should.

approach a constant as s ~ 00, we are now forced to set

where the exponential represents the effect of inelas-

ticity in the 2r2r channel. The other part in (6) comes
from applying elastic unitarity,

LA(s, l) —A*(s,P)) -s—4m. ' 'I'
A. (s,l)A*(s,P),

2i

11. INTEGRAL EQUATIONS (Il c) =B—lnB B. — (7)

We consider the p trajectory n, (s) and assume it We then have, substituting (5)—(7) into (4),
obeys the dispersion relation

4m'
Im.(') Im ()=g' jF( ()+-')ll -+

nv(v) =A+B(v—1)+ dv', (3) km, 2—4m '
p (v' —1)(v'—v)

where
v = (s—4m„')/(m '—4mn') .

For the reduced residue function, we want a function
for which we can write an Omnes-type dispersion
relation;

Xexp (B lnB —B)v+ L2'+Reu(v) $ lnv

"—Im~(v') lnv'+0 r(v')
dv', (g)

(v' —v)(v'-1)

b(v) =g' exp
ep(v')

dp
2r p (v' —1)(v'—v)

where

&(v) = Ib(v) I

e'"'"' (4)

The reduced residue function is proportional to the
residue, which must vanish whenever the trajectory
crosses a negative half-integer. In potential theory, this
happens at the "indeterminacy points, """which can
be given as solutions to polynomials in s, the nth
trajectory encountering n —1 such indeterminacy
points. In order to avoid zeros in b(v), it was possible to
divide the residue P„(s) by g" ' (s—s ), where the s
are the n —j indeterminacy points. However, for a
trajectory which falls to negative infinity for negative v,

n becomes infinite. The function which naturally pre-
sents itself in this case instead of the inverse product of
indeterminacy points is F(n(v)+ —,') for the top trajectory.
%e now define

b(v) —=e'"F(n+2')p(v)e —n&"I ' " (3)

Ke again make a very simple ansatz for the connection

"See, e.g., P. Kaus, Nuovo Cimento 29, 598 (1963)."However, such a calculation must be approached with
caution, because of threshold difhculties when a(y=0) & —~. See,
e.g., Ref. 7, Appendix,

Xexp (v—1) B(ln(Bv) —1)

where

I' "Imn(v') ln(%')+Or(v')
+

p (v' —v) (v' —1)

Q2 g2g(B lnB—B)

Since we are dealing with the p trajectory, we have
set the subtraction constant A, which is the real part
of the trajectory at the p mass, equal to unity.

The strange combination of factors, B lnB —B, comes
about because of the asymptotic property of F(Z);

F(g) ~ (2&)1/2e(z lnz —z)—$ Inz/1+0(g —1) ] (1(jl

Substituting (3), the dispersion relation for n(v), into

(8) gives the integral equation

4m '
~

I/2--1
Ima(v)=G2v»2 )F(n(v)+-,') ~~ +v

~

km, -4m. i
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III. NUMERICAL RESULTS

p traje y

I' " Imn(v')
dvRen(v) =1+(v—1) 8+

1/2- —1

Imn(v) =G'v' '
~
I'(n(v)+-, )

P 7P
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may or may not agree with anybody else's definition of
"reduced residue. "

IV. DISCUSSION

The integral equation (11) represents the simplest
extension of the method described in Ref. 6, which
worked well in the potential-theory framework. ~ The
boundary condition Ren(s) ~ s is not unique and until
we better understand all the consequences of rising
trajectories, we cannot settle this question. Recently,
Khuri' proved that if a single trajectory rises,
Ren(s) —+ s", then tz must be smaller than rz. However,
from (1a) we see that this would produce ghosts. The
way out of this difl5culty probably comes from the need
for more trajectories (daughters), all rising as the same
power.

In the present model, the effect of the imaginary part
on the real part of the trajectory is never large. Near
threshold the imaginary part, and hence the curvature,
of the trajectory depends mostly on threshold condi-

tions, given by unitarity and the position and width of
the p meson, namely, Imrr(s) =0.1 at the p mass. More
important, perhaps, is the effect of the real part on the
imaginary part. It is seen from Fig. 1, for instance, that
to reach the favored parameters for straight-line fits
when the p is exchanged, ' n(0) =0.58 and o.'(0) =1.0,
would imply a width for the p larger than 180 MeV.

Fro. 4. The reduced residue function b(s)
for the solution of I"ig. 2.

5(v) = &(v)/(v —»). (12)

In this case (9) will be multiplied by v —ve on the
right side. The new parameter vp represents the some-
what arbitrary point at which P(v) vanishes. "Another
alternative is to write the dispersion relation (4) for
the function

5=&(v)/[~(v)+&j. (13)

In both cases (12) and (13), b(v) is de6ned by (5)—(7)
and in both cases Imn(s) ~ c after (12) and (13) are
used to get the integral equation equivalent to (9). The
second possibility [Eq. (13)j leads to

These specific conclusions may change somewhat with
different coupling equations (6) or boundary conditions
at inanity, which are implied by (4) and (5). There has
been no attempt made here to fit higher recurrences' of
the p, but it is easy to see from Fig. 1 that asymptotic
slopes 8 which fit the negative s region, i.e., around 0.82,
are too small to give a good p meson (n=3, s=2.7)
recurrence.

In connection with other boundary conditions it
should be mentioned that in the present model
Imn(s)-+ s '. This is consistent with (1), implying
a term Ren(s) ~ s ' lns which will be dominated by
the term proportional to s. It is perhaps more reasonable
to assume Imn(s) -+ c or s'~2.

In order to achieve this, the Omnes equation (4) can
be written for a function 5(v), which is to be defined as
going to a constant when Imn(v) has the new behavior.
Two possibilities present themselves; one is

4m. '
Imn(v)=G'~(o. (v)+E)I"—'(n(v)+-', )~~ +v

lm, '—4m '
I' " Imo. (v ) ln(v/v') —tan '[Imn(v')/Ren(v') j+8 r(v')

Xexp(v —1) B(ln(Bv) —1)+- dv' . (14)
7j Q

(v' —v)(v' —1)

"1n this connection see the discussion on number of zeros in b(v) in Ref. d.
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The significance of the parameter E here is that it is
a "residue-killing" factor when the trajectory passes
through n(v) =—X. For large ~vs~ in (12) or large E
in (13), the equations will change very little. But if the
zero is imposed near the threshold (v=0) or zero-mass
(s=0) region, the effect would be considerable.

If we wish to calculate daughter' trajectories, then
for the Eth daughter, the residue function (5) will have
I'(n+ss) replaced by I'(o.+ss+1V) and the subtraction
constant A in (3) adjusted to give a two-unit spacing
at s=0, i.e., A~=A —2X." It is clear that with the
inclusion of other trajectories, the coupling of the top
trajectories to each other must be taken more seriously.
We do not know how to do this, however, until we have
a reliable partial-wave representation for the case of
(possibly infinitely many) rising trajectories.

Finally, a word about models. From potential theory
we learned that with the usual kind of potentials, rising
trajectories are very hard to come by in a single-channel
problem. However, when we have high-spin resonances
at high energies, many decay channels are available.
Higher channels exert an attractive force on bound
states and resonances of lower channels especially near
their threshold, and as more channels open up this may
carry trajectories higher indefinitely. Chew and Jones"
have proposed a model along this line, where a tra-
jectory is dominated by the highest-spin, lowest-orbital-
angular-momentum channels, whose thresholds lie in
that region.

Another way to think about rising trajectories is to
consider a two-particle channel, the physical channel,
with a usual potential, coupled into a channel which in
the absence of coupling is something like a harmonic
oscillator. The physical channel, unitary above its
threshold, will contain all the Regge poles of the
harmonic oscillator, which has no threshold, but in the
absence of coupling has Regge trajectories of the form"

n~(v) =A ,'+Bv 2E, E—=—0,1, 2—~, (15)

"G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1964);
D. Freedman and J. M. Wang, Phys. Rev. Letters 17, 569 (1966);
Phys. Rev. 153, 1569 (196/).

"Private communication: see also S. Y. Chu and C. J. Tan,
University of California Radiation Laboratory Report No.
UCRL-17511, 1967 (unpublished).

"To get the closest thing to an g matrix for a harmonic
oscillator from that for the Coulomb potential, let x=r' and
P(r) =r'"y(r). D. L Fivel, Phys. Rev. 142, 1219 (1966).

where

V(r) = (1/B) (r'/4B 2)—

The residues of the corresponding horribly nonunitary
"5matrix" are given by

R~(v) = (—1)~/2E!F(a ~(v)+ as+a) . (16)

The indeterminacy points of (5) are displayed in (16).
Our Eqs. (11) can then be thought of as what happens
when such an infinite-energy-threshoM channel is
coupled to the finite threshold x-m channel. It is amusing
to think of the harmonic oscillator channel as a quark-
antiquark channel, the constant g' in (4) representing
the xx —+ gq coupling. Alternatively, it may be con-
sidered as representing infinitely many uncounted
channels. Even more vaguely, the two statements may
have the same meaning.

Refinement of the integral equations must wait for
better representations in which the high-energy part is
again subtracted out smoothly' and without double
counting. When we have such a representation, we can
improve the coupling formula (6) and consider many
trajectories as well as the question of crossing sym-
metry" and bootstrap. "
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